
Thirty-five percent of IT departments follow agile delivery methods, according to Forrester ¹. No, they’re not
just following iterative methods and calling it agile, but a little over twenty percent are and only thirteen
percent are still following a waterfall method, including the famed CMM. These thirty-five percent are adopting
a working style that empowers our highly skilled and highly paid technology professionals to solve business
problems creatively and autonomously in self-managing, self-organizing, accountable teams. Beyond IT,
product development at software companies all over the world have also begun to abandon the barriers of
innovation and speed moving to Scrum teams that consist of people from product manager to test engineer.

Continuing to manage projects following a waterfall method invites failure and inconsistent customer
satisfaction. In fact, Dr. Winston W. Royce, who sent us all on the waterfall course explicitly stated, “I believe
in this concept, but … [it] is risky and invites failure.”² Too bad we’ve spent the last fifty years holding tight to
the belief that we can manage software development with a project plan that presumes it can predict how
long it will take us to elicit requirements and design a solution that meets the customer needs.

At this point you’re probably thinking, “Yeah, it’s easy for our R&D and IT teams to follow agile as they don’t
have an external client to deal with.” But, we believe you can and here’s how.

Why should a professional services organization adopt Agile?

Several years ago Darin was mentoring a young consultant who was ambitious and eager to make her mark
on the world but had become disillusioned quickly after her brief project experience. She couldn’t understand
how so much time was spent on planning, discussing what should be done, and ruminating on how it would
be done. When she had started the actual work, she found that team after team would fall behind schedule
and reduce scope or cut quality to meet deadlines. Sound familiar? She shared a great metaphor outlining
how the project was progressing.

Using Agile Methods
for Enterprise
Software
Implementations

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

About Us

Kenny & Company is a management
consulting firm offering Strategy,
Operations and Technology services to
our clients.

We exist because we love to do the work. After
management consulting for 20+ years at some of the
largest consulting companies globally, our partners
realized that when it comes to consulting, bigger
doesn’t always mean better.

Instead, we’ve created a place where our ideas and
opinions are grounded in experience, analysis and
facts, leading to real problem solving and real
solutions – a truly collaborative experience with our
clients making their business our business.

We focus on getting the work done and prefer to let
our work speak for itself. When we do speak, we
don’t talk about ourselves, but rather about what we
do for our clients. We’re proud of the strong
character our entire team brings, the high intensity in
which we thrive, and above all, doing great work.

What’s Inside

Why should a professional services organization
adopt Agile? p 1

How do you convince a client? p 3

Estimating the Work p 4

Statement of Work p 5

Staffing & Training p 5

Project Tracking & Governance p 6

Quality Assurance (Testing) p 7

How do you get started? p 7

About the Authors p 7

For a complete list of Kenny & Company publications and information about us, please visit our website www.michaelskenny.com or
email us at info@michaelskenny.com.

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

…………..……………......

……..…...………….….......

.........…..…......
……..……..………………….......

…………...………….….......
.............…......

…………...……………......

....................…......

.......................….......

“We started the project getting the client really excited about what we were going to deliver. It was a Lexus. It was going
to solve all their problems and get them there in style. Once the project began, however, during requirements gathering
we realized that we wouldn’t be able to build the Lexus in the first release given the timeline that was committed to. We
would be able to build a Toyota Camry though, and it was pretty much the same thing as the two shared the same frame,
body, engine and other parts. They’d just have to let go of a few bells and whistles, and if they did, we’d be right on plan.
On it went through the software delivery life-cycle where at each stage it seemed necessary to reset expectations and
continue to downgrade. By the time testing began we were now only committing to a Toyota Corolla. When UAT began,
we realized that Release 1.0 was not going to work and that it would now only consist of the frame and body, and the
engine wouldn’t be put in until Release 1.1, when we’d be able to do a soft launch.”

All too often we work with our clients enthusiastically espousing how our software solution is going to radically
transform how they do business. What we don’t admit is that it’s difficult to change a company’s processes, gain
buy-in from diverse stakeholders and more often than not our systems are not as flexible as we need them to be.

An agile approach follows an empirical process model that requires frequent inspection and adaptation,
recognizing that software development is not like stamping out toys on an assembly line. Rather than spend a
client’s money and time planning, you begin the work focusing on the highest priority items that will deliver
business value. When those items are delivered, you move on to the next group of prioritized items. The outcome
is that you deliver the Lexus in Release 1.0.

How do you convince a client?

Professional services organizations, consultancies, law firms, ad agencies, and any other services business have
one thing in common – the contract. We call them work orders, statements of work, services contract, work
request, etc. It’s our way of comforting a client given what we are selling is intangible. It’s not an invoice that
comes after the work has been done. That would be all we needed if they were buying a hard-good from us as
they’d be able to see it, touch it and say, “I want two hundred.” No, it’s not easy to convince a client to trust that
we’re going to deliver on a promise given none of the work can be seen and in most cases understood. So, we
draft a piece of paper that attempts to illustrate what we jointly agree the services will be. And when it comes to
software, we’re asking them to imagine something they’ve never seen and then sign on the dotted line to indicate
they understand it well enough to commit to a long engagement. Let’s be real, all you’re selling at this point is
your reputation as both parties know that the piece of paper doesn’t even come close to defining what they’re
going to get from the engagement.

An agile approach, however, only requires the client to hold their breath for one sprint at a time. You will continue
to take time during the sales process to educate them on your approach. You’ll walk them through how you will
take a backlog of work and following their prioritization deliver work in small increments that demonstrate the
software working, not provide hundred page specifications that they have to then envision what the software will
look like, but real working code. This is dramatically different. This is a new commitment. This says, “I’m going to
focus your money and energy on getting you up and running so we can solve those business challenges we
convinced you our software solves.”

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 3

Still not convinced? Ask them to sign up for two sprints. If your software is a large, traditional implementation
then your sprints are probably going to be thirty days each. This means you’re only asking them to hold their
breath for thirty days and will only require an investment of a small portion of the engagement. If they don’t see
results and feel engaged more than on any other project they’ve had, then let them terminate the agreement for
convenience. We’re convinced that if you follow agile methods, you’ll demonstrate value in the first sprint and
they’ll be hooked. They’ll be hooked because they’re going to see a level of transparency they’ve never had
before and the data will be real. They’ll be hooked because you’re going to deliver working code after the first
sprint. No, not Visio diagrams, HTML mock-ups or wire frames, but real, working software.

Practically speaking, you should break the work up into two engagements. The first is your Discovery Phase.
During this short engagement you should have pre-packaged questionnaires, process flows and a vanilla version
of your system to demonstrate. The exercise then would be to walk through your system similar to how you
would in a detailed RFP life-cycle, but the focus would be to identify the areas that may need customizations to
meet the client’s needs and gather the basic information that you need to understand what the effort will be to
configure your system. We’re making the assumption that it’s packaged software (a.k.a., Commercial off the Shelf
[COTS]) and so you should know what areas you have to setup and configure. We have seen many companies
use a lengthy questionnaire that can be completed by the client themselves, to gather the key insights to allow
the team to estimate the engagement. These details now become the backlog. Once you have this you can
facilitate a prioritization with the client such that you finish the phase knowing what the work is you team needs to
do and have something to estimate.

Estimating the Work

As with other areas of this article, we expect you to have read about agile and Scrum, and in this case we would
recommend that you dive deeper into the books on estimating with agile. But, we do want to provide some
highlights around the approach. Estimating software implementation efforts is hard. No methodology in the world
can predict what your client’s demands and dreams will be once they become more familiar with your software.
The difference between agile methods and traditional waterfall methods is agile approaches don’t pretend they
can. Estimating following an agile approach is composed of two main processes. The first is when you are
estimating backlog items and the second is when you’re estimating throughput of completing a grouping of
backlog items.

Following the workshops and questionnaires of the Discovery Phase, you’ll have a backlog of items that
represent specific configuration tasks and customizations. Each of these needs to be estimated for not only the
“dev time”, but all the time related to completing the task from further requirements gathering, to integration
testing and deployment. Teams use a method of comparison to something they know and use a metaphor such
as “t-shirt sizes” to keep them focused on referencing something they know versus the new subject material. An
example is when they look at a backlog item that requires them to setup the login screen. They may see that
there are no changes to the software and thus be able to flag that item as Extra Small. In another case, they may
be looking at an item that is typically a couple days of work, but in this case there are a number of
customizations. So, what might normally be flagged as Medium or Large may now be increased in t-shirt size.
The t-shirt sizes do represent time and thus later can be converted to hours or days. It will still remain difficult to
estimate the throughput and so teams are best served using a comparative method that references past
experiences with similar clients. Once the project begins, however, estimating the completion time becomes
increasingly accurate as you inspect actual burn-down of the backlog and the velocity of work completed. This
becomes valuable when the client makes a request for something new in the middle of the project.

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 4

Regardless of what methodology you’re using today, your
team should have a list of tasks or deliverables that if
checked off as delivered mean your system is setup. Use
this list to keep track of estimates and “actual” from client
to client and estimating will become easier and easier for
your team during the fast paced sales process.

Statement of Work

Well, we still need a contract. And yes, introducing a new
methodology is likely going to be difficult – at least until
everyone wakes up and starts challenging waterfall
contracts more. Until then, we propose a few
modifications to your contract to help alleviate client
concerns. The first is to define Scrum and agile in the
document itself. Include an overview of the process, your
client’s involvement and highlight the level of transparency
provided with this approach. We used illustrations to show
how the sprints work pointing out that they get to have a
formal review of working software at the conclusion of
each sprint. Emphasize that they will also be able to
control the prioritization and change direction as you go –
something you won’t find in a waterfall based contract.
Include the backlog and each item’s estimate. This should
be translated to engineering hours or days, whichever is
most relevant to your efforts.

A key selling point to agile is that it is much more flexible
to change. Rather than scare everyone into the stone
tablets that are typical requirements of waterfall
engagements that require senior councils to approve any
change once the project has begun and typically a major
“sign-off” of a change order or revised contract, agile
methods allow the client to add, modify and remove items
from the backlog as they go. So, if they get into the
project and having seen demonstrated working software
after a few sprints realize that your solution is amazing
and they just want to get using it and no longer are caught
up on all their customizations, those items are simply de-
prioritized and not executed on. Now, you’ve probably
been wondering at this point, “yeah, this sounds all fine
and good, but my client has to get approval for a budget
and there isn’t all this infinite flexibility!” You’re right,
which is why we propose

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 5

Recommended Reading:
• Succeeding with Agile: Software Development Using Scrum by Mike Cohn
• Agile Project Management with Scrum by Ken Schwaber
• Agile Estimating and Planning by Mike Cohn

introducing contingency. Yes, we still need contingency.
The difference here is that we’re only going to use it if the
client approves it versus adding in an arbitrary number to
each waterfall phase because we know we never get
through it like we predict. In this case we create a bucket
for “refundable contingency” that gives the client some
flexibility later to change the prioritization of a backlog item
and / or add new scope once they’ve become more
educated on our system. The best way to use this is to
keep the client focused on using the software as intended
and minimize customizations. When in the heat of the
moment you can say, “we can definitely add a new
backlog item to the next sprint that will allow for that
customization if you approve us decrementing the
refundable contingency bucket.” So, the client gets a
contract with one number, which is really made up of what
you believe the work to be plus a bucket of refundable
contingency so that they can make their budget ask with
some room. Can you always get this? No, but it’s worth a
try and a lot easier to get approval for when they don’t just
think contingency is being added to each scope item.
Remember Parkinson’s Law: “Work expands so as to fill
the time available for its completion.”

Again, if they’re not ready to sign up for the whole
engagement, ask them to sign up for two sprints, then
prove it.

Staffing & Training

Agile teams require deeper skills and competency than
most managers are ready to recognize. They also require
more multi-discipline resources that are comfortable doing
different tasks. In a scrum team, the whole team commits
to delivering the scope of a sprint, how they get there is up
to them. The majority of coding tasks will be done by the
developers and the majority of testing tasks will be done by
the test engineer, but you need test engineers that can
jump in and help coding if the team falls behind and
developers that test their code. Additionally, you need to
continue to invest in their skills. Every company should be
doing this anyway, but let’s face it, most don’t invest in
their human resources. We spend tons of money upgrading
computers, changing out old furniture, upgrading plants
and equipment, but rarely have the same focus on our
people. Agile teams require deeper expertise and thus
need more investment. The benefit is that you accomplish
significantly more output

Project Tracking & Governance

Most people think agile is a free for all. They think it means developers get to just begin coding without
requirements defined and no documentation. What most don’t realize is that agile methods actually have more
planning and with more team members than any other method. And yes:

• You still need a project work plan; the architecture of it is just changed

• You still need to track what everyone is working on and assigned to

• You still get to track estimates and actuals,

• You still get to keep track of deliverables and milestones

• You will have amazing status reports, and

• You still have change control.

Project plans are your backlog. You can pre-arrange the backlog items into buckets that you believe will be
future sprints to allow you to forecast roughly when the engagement might finish. This also allows you to
illustrate to the client the order that might be followed. These tasks though should be deliverable-based rather
than activities-based. This allows you to demonstrate “earned value” rather than simplified metric of percent
complete. The real value of agile in project tracking is the level of transparency provided. Prior to each sprint, a
sprint backlog is created that is a decomposed group of backlog items that are made up of smaller tasks or
work items. Each day the team then marks off only those that are complete, not partially complete, but 100%
ready for deployment. This allows the team to provide a “burn-down chart”, daily illustrating progress. This along
with standard impediment logs (a.k.a., issues log) can be aggregated to provide a daily status report. Each
backlog item has an effort estimate and during the sprint planning meeting, team members assign themselves to
each item and so you also have visibility into who’s working on what.

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 6

with significantly less people. You’ll find scrum teams of
seven to nine people that can outperform a forty person
team from the top system integrator in the world. So, if
your team uses a scripting language to configure your
software, or have to code in Java typically or just use your
proprietary configuration tools, make sure they are
experts in these skills and invest in this over time.

Staffing an agile team requires breaking down boundaries
between disciplines. It means a team must work together,
even though team members may have reporting
relationships that go up to different executives in your
company. This becomes very difficult for most managers
as they begin to worry about where they fit into this new
world, which is unfortunate because if they were doing
their jobs they’d realize their value is not in trying to
control the flow of information or who works on what,
rather they’d focus on improving the talents of their team
by designing training programs for them, coaching them
in their day to day work and finding new ways to share
their skills across other teams so that everyone begins to
build some multi-discipline experience. This is a huge job
and if done right can produce truly high performing
teams.

The other key to staffing an agile team is to create a new
working environment for these teams. The cube farms
and closed door offices don’t inspire creativity, innovation
or collaboration. You need open work spaces, sometimes
called “team rooms” where each team member can see
one another, work together and collaborate on the
commitments of each sprint. This doesn’t mean throw
everyone in bullpens and save a ton of money on office
space. You still need private areas and people need quiet
places.

And most importantly, get everyone trained on the agile
methods you’re adopting. If you choose Scrum as your
project management framework, which is becoming the
standard, then get everyone trained. Even if they won’t
always play the role of scrum master, they all should be
able to step into it and know how the process works. For
those that will play a more traditional role of business
analyst or client engagement roles, get them trained in
what is called the product owner role, this role manages
the backlog and helps the various stakeholders of a
project to define their requirements. Engineers should
also get training on software test automation tools as this
is a critical pillar of agile delivery teams.

Within a given sprint the rule is that you don’t introduce change. This is typically not met with too much
resistance as the client only has to leave the team alone for a max of 30 days. Any changes proposed are
converted into backlog items and then prioritized against everything remaining. If the team is completing items
ahead of plan, then you may be able to absorb the new backlog item. If the new or modified item introduces more
effort than originally planned, you would then remind the client of their refundable contingency and ask if it’s
important enough to decrement that budget. This activity alone often gets them thinking more about business
value of their ideas than any other approach you’ve used in the past. It puts the onus on them to make the call.

Quality Assurance (Testing)

Testing typically makes up most of the effort of any project. Many project managers like to pretend that testing
will be some percent of development and most executives believe it should be less effort as we all want more
features, less overhead. The reality is testing often takes almost twice as much effort as development and breaks
schedules because of two reasons. The first is that developers in the waterfall approach get trapped in the
telephone game and have to make guesses at what the client wanted and focus on meeting schedule milestones
over validating assumptions and thus cut corners when it comes to the quality of their work. It will all get caught
in testing, right? Secondly, when the project does decide to move to the test phase(s) of the project, the team
typically has planned for manual testing that takes a significant number of resources and hours to repeat tests
over and over after each bug is resolved. To become an agile team requires the team to validate their
assumptions often with their client through daily check-ins and formal sprint review meetings and requires a team
to automate their tests so that they can be run daily and constantly to continually verify the system works as
expected.

This will require test engineers that have deeper technical skills and can build tests in the various automation
tools. This also requires a better understanding of how the code actually works so that they create efficient tests
rather than only black box tests because they don’t know that executing the four different scenarios is actually
just executing the same function in the code four times.

The goals of an agile team are not to produce documentation and test cases and scripts, but rather to
demonstrate working code that is potentially shippable after each sprint. This requires test driven development
and automated tests to be built in the beginning. It also means a lot less overhead in your test management
efforts as the team is more focused on making the system work then showing how the dev team missed
requirements and/or have bugs.

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 7

How do you get started?

Don’t try to do this on your own. Get a coach and some practitioners to join your team. Supplement
the teams with people that have done this before and get everyone trained up on the basics. You
should also show your commitment by getting trained yourself. Unfortunately there is no “dipping your
toe in” when it comes to agile. As a professional services organization, this makes it difficult to begin.
If you have an existing client that has follow-on project work, find a way to get one of those projects
following this new approach. If you have a project that has stalled out or is failing, stop what they’re
doing, create a backlog of what’s left and begin getting it back on track one sprint at a time. And
however you start, don’t forget to employ the basic agile engineering practices out of the gate such as
continuous integration and automated testing. This is your foundation.

© 2017 Michael S. Kenny & Company LLC. All rights reserved. Using Agile Methods for Enterprise Software Implementations

Page 7

About the Authors

Darin Archer is a Senior Manager of ecommerce at Adobe Systems where he is currently transforming an online team to agile methods.
Mr. Archer has been a professional services executive for over 15 years, at ISCS, a software company focused on the Insurance
Industry and at Accenture, a Global Consulting & Technology Services and Outsourcing company. At ISCS, he was a key architect of
its industry-leading services delivery methodology and directed implementations, technical support, and training, as well as overseeing
alliances with service partners. Prior to ISCS Mr. Archer spent over a decade in consulting, where he led large custom and packaged
software implementations for Fortune 500 companies. Within Accenture’s system integration and technology practice, he advised
clients on product and IT strategy, development methodologies and global sourcing. Mr. Archer received his Bachelor of Science
degree in business administration with an emphasis in information systems from the University of Montana.

Will Yen is a Partner and the Chief Marketing Officer at Kenny & Company. He has over 18 years of experience delivering business
solutions for Fortune 1000 companies. His range of experience includes supply chain strategy, marketing strategy and planning,
product management and development, IT strategy and planning, mobile computing, and financial services software development. Will
has been published in Baseline Magazine, Computer Technology Review, and PS Village, and is the author of several research
whitepapers and blogs. He holds a Bachelor of Science in Managerial Economics from the University of California, Davis, a Master of
Science in Applied Economics from University of Georgia, Athens and a Master of Business Administration from Duke’s Fuqua School
of Business.

This article was first published on www.michaelskenny.com on February 22nd, 2011.The views and opinions expressed in this article are provided by Kenny &
Company to provide general business information on a particular topic and do not constitute professional advice with respect to your business.

Kenny & Company has licensed this work under a Creative Commons Attribution-NoDerivs 3.0 United States License.

References:
1. http://agilescout.com/learn-more-agile-software-development-methods-this-year
2. “Managing the Development of Large Software Systems”, Dr. Winston W. Royce, University of Maryland, 1970

Who We Are

To see additional publications and learn
more about us, please visit our website
at: www.michaelskenny.com.

Also, follow us on:

Kenny & Company is a management consulting firm offering Strategy, Operations, and
Technology services to our clients.

Partner Led
Our Partners are personally committed to our clients and lead every
engagement.

Experience, Perspective and Passion
We average over 20 years in professional services and bring tailored
approaches to every client engagement.

Focused, Collaborative, High-Impact
We work side-by-side with our clients in highly focused teams to solve
complex business problems.

Client First
Our highest priority is our client’s professional and personal success.
We believe clients should expect more.

Guarantee Our Work
We guarantee our clients complete satisfaction every engagement every
time.

Contact Information

Firm Headquarters
Serving San Francisco, Silicon Valley & Los Angeles
1710 South Amphlett Blvd.
Suite 302
San Mateo, CA 94402

Northwest Office
Serving Portland & Seattle
707 SW Washington St.
Suite 925
Portland, OR 97205

For inquiries: info@michaelskenny.com

